Fantope Projection and Selection: A near-optimal convex relaxation of sparse PCA

نویسندگان

  • Vincent Q. Vu
  • Juhee Cho
  • Jing Lei
  • Karl Rohe
چکیده

We propose a novel convex relaxation of sparse principal subspace estimation based on the convex hull of rank-d projection matrices (the Fantope). The convex problem can be solved efficiently using alternating direction method of multipliers (ADMM). We establish a near-optimal convergence rate, in terms of the sparsity, ambient dimension, and sample size, for estimation of the principal subspace of a general covariance matrix without assuming the spiked covariance model. In the special case of d = 1, our result implies the near-optimality of DSPCA (d’Aspremont et al. [1]) even when the solution is not rank 1. We also provide a general theoretical framework for analyzing the statistical properties of the method for arbitrary input matrices that extends the applicability and provable guarantees to a wide array of settings. We demonstrate this with an application to Kendall’s tau correlation matrices and transelliptical component analysis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Sparse Decomposition of Low Rank Symmetric Positive Semidefinite Matrices | Multiscale Modeling & Simulation | Vol. 15, No. 1 | Society for Industrial and Applied Mathematics

Abstract. Suppose that A ∈ RN×N is symmetric positive semidefinite with rank K ≤ N . Our goal is to decompose A into K rank-one matrices ∑K k=1 gkg T k where the modes {gk} K k=1 are required to be as sparse as possible. In contrast to eigendecomposition, these sparse modes are not required to be orthogonal. Such a problem arises in random field parametrization where A is the covariance functio...

متن کامل

Designing illuminant spectral power distributions for surface classification - Supplemental Material

There are many scientific, medical and industrial imaging applications where users have full control of the scene illumination and color reproduction is not the primary objective. For example, it is possible to co-design sensors and spectral illumination in order to classify and detect changes in biological tissues, organic and inorganic materials, and object surface properties. In this paper, ...

متن کامل

Nonconvex Statistical Optimization: Minimax-Optimal Sparse PCA in Polynomial Time

Sparse principal component analysis (PCA) involves nonconvex optimization for which the global solution is hard to obtain. To address this issue, one popular approach is convex relaxation. However, such an approach may produce suboptimal estimators due to the relaxation effect. To optimally estimate sparse principal subspaces, we propose a two-stage computational framework named “tighten after ...

متن کامل

Sparse PCA with Oracle Property

In this paper, we study the estimation of the k-dimensional sparse principal subspace of covariance matrix Σ in the high-dimensional setting. We aim to recover the oracle principal subspace solution, i.e., the principal subspace estimator obtained assuming the true support is known a priori. To this end, we propose a family of estimators based on the semidefinite relaxation of sparse PCA with n...

متن کامل

Spectral Bounds for Sparse PCA: Exact and Greedy Algorithms

Sparse PCA seeks approximate sparse “eigenvectors” whose projections capture the maximal variance of data. As a cardinality-constrained and non-convex optimization problem, it is NP-hard and is encountered in a wide range of applied fields, from bio-informatics to finance. Recent progress has focused mainly on continuous approximation and convex relaxation of the hard cardinality constraint. In...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013